evox.algorithms.so.de_variants.code
¶
Module Contents¶
Classes¶
The implementation of CoDE algorithm. |
Data¶
API¶
- evox.algorithms.so.de_variants.code.rand_1_bin¶
[0, 0, 1, 0]
- evox.algorithms.so.de_variants.code.rand_2_bin¶
[0, 0, 2, 0]
- evox.algorithms.so.de_variants.code.current2rand_1¶
[0, 0, 1, 2]
- evox.algorithms.so.de_variants.code.rand2best_2_bin¶
[0, 1, 2, 0]
- evox.algorithms.so.de_variants.code.current2pbest_1_bin¶
[3, 2, 1, 0]
- class evox.algorithms.so.de_variants.code.CoDE(pop_size: int, lb: torch.Tensor, ub: torch.Tensor, diff_padding_num: int = 5, param_pool: torch.Tensor = torch.tensor([[1, 0.1], [1, 0.9], [0.8, 0.2]]), replace: bool = False, device: torch.device | None = None)[source]¶
Bases:
evox.core.Algorithm
The implementation of CoDE algorithm.
Reference: Wang Y, Cai Z, Zhang Q. Differential evolution with composite trial vector generation strategies and control parameters[J]. IEEE transactions on evolutionary computation, 2011, 15(1): 55-66.
Initialization
Initialize the CoDE algorithm with the given parameters.
- Parameters:
pop_size – The size of the population.
lb – The lower bounds of the search space. Must be a 1D tensor.
ub – The upper bounds of the search space. Must be a 1D tensor.
diff_padding_num – The number of differential padding vectors to use. Defaults to 5.
param_pool – A tensor of control parameter pairs for the algorithm. Defaults to a predefined tensor.
replace – A boolean indicating whether to replace individuals in the population. Defaults to False.
device – The device to use for tensor computations. Defaults to None.