evox.problems.numerical.cec2022

Module Contents

Classes

CEC2022

The CEC 2022 single-objective test suite Problem

API

class evox.problems.numerical.cec2022.CEC2022(problem_number: int, dimension: int, device: torch.device | None = None)[source]

Bases: evox.core.Problem

The CEC 2022 single-objective test suite Problem

Initialization

Initialize a single test function instance from the CEC2022 test suite.

Parameters:
  • problem_number – The index for the specific test function to be used. Must be ranged from 1 to 12.

  • (int) (dimension) – The dimensionality of the problem. Must be one of [2, 10, 20].

  • optional) (device (torch.device,) – The device on which tensors will be allocated. Defaults to None.

Raises:
  • AssertionError – If the dimension is not one of the allowed values or if the function is not defined.

  • FileNotFoundError – If the necessary data files for the problem are not found.

shift(x: torch.Tensor, offset: torch.Tensor) torch.Tensor[source]

Shift the input vector.

rotate(x: torch.Tensor, M: torch.Tensor) torch.Tensor[source]

Rotate the input vector.

cut(x: torch.Tensor, Gp: List[float], sh_flag: bool, rot_flag: bool, offset: torch.Tensor, M: torch.Tensor) List[torch.Tensor][source]
sr_func_rate(x: torch.Tensor, sh_rate: float, sh_flag: bool, rot_flag: bool, offset: torch.Tensor, M: torch.Tensor) torch.Tensor[source]

Shift and rotate function with rate.

cf_cal(x: torch.Tensor, fit: List[torch.Tensor], delta: List[int], bias: List[int]) torch.Tensor[source]
cec2022_f1(x: torch.Tensor) torch.Tensor[source]

Zakharov Function

cec2022_f2(x: torch.Tensor) torch.Tensor[source]

Rosenbrock Function

cec2022_f3(x: torch.Tensor) torch.Tensor[source]

Schaffer F7 Function

cec2022_f4(x: torch.Tensor) torch.Tensor[source]

Step Rastrigin Function (Noncontinuous Rastrigin’s)

cec2022_f5(x: torch.Tensor) torch.Tensor[source]

Levy Function

cec2022_f6(x: torch.Tensor) torch.Tensor[source]

Hybrid Function 2

cec2022_f7(x: torch.Tensor) torch.Tensor[source]

Hybrid Function 10

cec2022_f8(x: torch.Tensor) torch.Tensor[source]

Hybrid Function 6

cec2022_f9(x: torch.Tensor) torch.Tensor[source]

Composition Function 1

cec2022_f10(x: torch.Tensor) torch.Tensor[source]

Composition Function 2

cec2022_f11(x: torch.Tensor) torch.Tensor[source]

Composition Function 6

cec2022_f12(x: torch.Tensor) torch.Tensor[source]

Composition Function 7

zakharov_func(x: torch.Tensor) torch.Tensor[source]

Problem number = 1.

step_rastrigin_func(x: torch.Tensor) torch.Tensor[source]

Problem number = 4.

levy_func(x: torch.Tensor) torch.Tensor[source]

Problem number = 5.

bent_cigar_func(x: torch.Tensor) torch.Tensor[source]
hgbat_func(x: torch.Tensor) torch.Tensor[source]
rastrigin_func(x: torch.Tensor) torch.Tensor[source]
katsuura_func(x: torch.Tensor) torch.Tensor[source]
ackley_func(x: torch.Tensor) torch.Tensor[source]
schwefel_func(x: torch.Tensor) torch.Tensor[source]
schaffer_F7_func(x: torch.Tensor) torch.Tensor[source]
escaffer6_func(x: torch.Tensor) torch.Tensor[source]
happycat_func(x: torch.Tensor) torch.Tensor[source]
grie_rosen_func(x: torch.Tensor) torch.Tensor[source]
griewank_func(x: torch.Tensor) torch.Tensor[source]
rosenbrock_func(x: torch.Tensor) torch.Tensor[source]
discus_func(x: torch.Tensor) torch.Tensor[source]
ellips_func(x: torch.Tensor) torch.Tensor[source]
evaluate(pop: torch.Tensor) torch.Tensor[source]