Source code for evox.algorithms.so.pso_variants.pso

import torch

from evox.core import Algorithm, Mutable, Parameter
from evox.utils import clamp

from .utils import min_by


[docs] class PSO(Algorithm): """The basic Particle Swarm Optimization (PSO) algorithm. ## Class Methods * `__init__`: Initializes the PSO algorithm with given parameters (population size, lower and upper bounds, inertia weight, cognitive weight, and social weight). * `step`: Performs a single optimization step using Particle Swarm Optimization (PSO), updating local best positions and fitness values, and adjusting velocity and positions based on inertia, cognitive, and social components. Note that the `evaluate` method is not defined in this class, it is a proxy function of `Problem.evaluate` set by workflow; therefore, it cannot be used in class methods other than `step`. """ def __init__( self, pop_size: int, lb: torch.Tensor, ub: torch.Tensor, w: float = 0.6, phi_p: float = 2.5, phi_g: float = 0.8, device: torch.device | None = None, ): """ Initialize the PSO algorithm with the given parameters. :param pop_size: The size of the population. :param w: The inertia weight. Defaults to 0.6. :param phi_p: The cognitive weight. Defaults to 2.5. :param phi_g: The social weight. Defaults to 0.8. :param lb: The lower bounds of the particle positions. Must be a 1D tensor. :param ub: The upper bounds of the particle positions. Must be a 1D tensor. :param device: The device to use for the tensors. Defaults to None. """ super().__init__() device = torch.get_default_device() if device is None else device assert lb.shape == ub.shape and lb.ndim == 1 and ub.ndim == 1 and lb.dtype == ub.dtype self.pop_size = pop_size self.dim = lb.shape[0] # Here, Parameter is used to indicate that these values are hyper-parameters # so that they can be correctly traced and vector-mapped self.w = Parameter(w, device=device) self.phi_p = Parameter(phi_p, device=device) self.phi_g = Parameter(phi_g, device=device) # setup lb = lb[None, :].to(device=device) ub = ub[None, :].to(device=device) length = ub - lb pop = torch.rand(self.pop_size, self.dim, device=device) pop = length * pop + lb velocity = torch.rand(self.pop_size, self.dim, device=device) velocity = 2 * length * velocity - length # write to self self.lb = lb self.ub = ub # mutable self.pop = Mutable(pop) self.velocity = Mutable(velocity) self.fit = Mutable(torch.full((self.pop_size,), torch.inf, device=device)) self.local_best_location = Mutable(pop) self.local_best_fit = Mutable(torch.full((self.pop_size,), torch.inf, device=device)) self.global_best_location = Mutable(pop[0]) self.global_best_fit = Mutable(torch.tensor(torch.inf, device=device))
[docs] def step(self): """ Perform a normal optimization step using PSO. This function evaluates the fitness of the current population, updates the local best positions and fitness values, and adjusts the velocity and positions of particles based on inertia, cognitive, and social components. It ensures that the updated positions and velocities are clamped within the specified bounds. The local best positions and fitness values are updated if the current fitness is better than the recorded local best. The global best position and fitness are determined using helper functions. The velocity is updated based on the weighted sum of the previous velocity, the cognitive component (personal best), and the social component (global best). The population positions are then updated using the new velocities. """ compare = self.local_best_fit > self.fit self.local_best_location = torch.where(compare[:, None], self.pop, self.local_best_location) self.local_best_fit = torch.where(compare, self.fit, self.local_best_fit) self.global_best_location, self.global_best_fit = min_by( [self.global_best_location.unsqueeze(0), self.pop], [self.global_best_fit.unsqueeze(0), self.fit], ) rg = torch.rand(self.pop_size, self.dim, device=self.fit.device) rp = torch.rand(self.pop_size, self.dim, device=self.fit.device) velocity = ( self.w * self.velocity + self.phi_p * rp * (self.local_best_location - self.pop) + self.phi_g * rg * (self.global_best_location - self.pop) ) pop = self.pop + velocity self.pop = clamp(pop, self.lb, self.ub) self.velocity = clamp(velocity, self.lb, self.ub) self.fit = self.evaluate(self.pop)
[docs] def init_step(self): """Perform the first step of the PSO optimization. See `step` for more details. """ self.fit = self.evaluate(self.pop) self.local_best_fit = self.fit self.global_best_location, self.global_best_fit = min_by([self.pop], [self.fit])